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Abstract: The preparationof, hithertounknown, 2’,3’-didehydro-3’-deoxythymidinederived 5’-thio-
ether, sulfoxide, srdfone [4-9] is described. The key steps of this syntheais are the nucleophilic
displacementsof a halogen hy a tfrioalkylsodiumsalt, and the later oxidationof the sulfur group into
sulfone and sulfoxideanrdogues. These compoundshave been evaluatedfor their inhibition of L121O
cells proliferation. None of the compoundswere activeexceptthe 5’-ethykhioanalogue4b that showeda
moderateactivity(IC~oof 90.2 @f). @ 1997Elsevier Science Ltd.

The thymidine 5’-monophosphate (TMP) which is required for cell proliferation is biosynthesized via

the de now pathway from deoxytrridine 5’-phosphate. Several drugs are effective in blocking that de two

pathway. The alternate route to TMP involves a reaction catalyzed by thymidine kinase. In neoplastic tissue

and proliferating cells, the activity of this enzyme is elevated to a high level that permits this enzyme to play a

major role in TMP production in vivo.I.ZEvidence in&cates a direct correlation between TK COIItWtt in tumor

tissue and tumor growth rate. Two isozymes of TK have been recognized.3-7Mitochondrkd-thymidine kinase
Ja Iung,s Colon,E and the c~oplasrnic isozyme (C-TK)(M-TK) is the predominant form in adult human liver,

predominates in human tumor cell lines.49 The data previously reported by Hampton et al.’”” suggest that

effective neoplastic chemotherapy might be achieved when a drug that blocks de novo TMP biosynthesis is

coadministrated with a drug that selectively inhibits the C-TK. Several 5’-alkylthionucleosides have been

synthesized and 5’-(ethylthio)-5 ’-deoxythymidine was found to be a noncompetitive inhibitor of the enzyme.’””

Recently, other 5’-thioalkyl nucleosides have been reported as antitumor or antiviral agents. ’2-’4

As part of our drug discovery program, we initiated the synthesis of 5’-alkylthio thymidines derived as

potential anticancer agents. Herein, we wish to report the syntheses of the synthesis and preliminary antitumor

evahtation of several, hitherto unknown, 2’,3’-didehydro-3’-deoxy-5’-thioether thymidines. The bulk as well as

the polar character of the groups attached to the 5’-carbon were varied, as well as the 2’,3’-position in the hope

that this might bring about an improvement in the therapeutic index based on an increase in substrate specificity
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for the C-TK. Finally, we also focused on the synthesis of the 5’-alkylsulfoxide or 5’-alkylsulfone analogues.

In fact, during metabolization, organic sulfides can undergo oxidation to sulfoxides, and then to sulfones,

whereas sulfoxides but not sulfones can undergo reduction.15.16The ~h~ngeinlipophilicity associated with the

oxidation state of the S-atom, and body distribution are not straightforward to predict.

Our synthetic strategy to the 5’-alkylthionucleosides utilized the known compound 2’,3’-didehydro-3’-

deoxythymidine, D4T, 2 as a chiral starting material, which was prepared in three steps from thymidine”

(Scheme 1).
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Scheme 1. Reagents: (i) MsC1, CH2C12,Et3N; (ii) NaOH IN, reflux; (iii) tBuOK, DMSO then toluene;

(iv) SOC12,HMPA; (v) RSH, NaH, THF; (vi) H2 Pal/C 20 psi; (vii) MMPP 0.5 eq, CH2C12;(viii) MMpp

1 eq, CH2C12.

We synthesized the key intermediate 5’-chloro analogue 3 by addition of SOCIZ in HMPA to 2.

Treatment of 3 at low temperature by an excess of sodium methylthioate or ethylthioate gave respectively the

5’-S-methyl-5’-thiD4T4T4a and 5’-S-ethyl-5’-thio analogue 4b with quantitative yield. The oxidation of 4a and

4b with 0.5 eq of MMPP gave the diastereomeric sulfoxides, 5’-methylsulfinyl-(Sws)-D4T 5a (90%) and
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5’-ethylsulfinyl-( Sws)-D4T Sb (92%) respectively. The oxidation of 4a and 4b with one equivalent of

monoperoxyphtalic acid (MMPP) gave the sulfone derivatives 6a (99%) and 6b (95%).’* The hydrogenation of

4a and 4b yielded the 5’-thioether-2’ -deoxythymidine 7a and 7b respectively with quantitative yield.’g It is

interesting to note that the sulfur did not decrease the activity of the Pal/Cused as catalyst for the hydrogenation.

Oxidation of 7a and 7b gave a diastereomeric mixture of sulfoxides 8a (73%) and 8b (63%) respectively.m The

sulfone analogues 9a (85%) and 9b2](80%) were obtained directly by the hydrogenation under Pal/C of the

D4T-derivatived 5’-sulfone 6a and 6b.22The anti-cancer activity for the synthesized compounds was evaluated.

However, none of the compounds did show any significant anti-cancer activity (IC50> IOOpM)on the L121O

cellsz3except 3’-deoxy-2’,3’-didehydro-5’-ethylthiothymidine that exhibited a moderate activity (IC50= 90.2

@f). Other biological evaluations are in progress.

In summary, the synthesis of hitherto unknown 2’,3’-didehydro-3’-deoxythymidine derived 5’-alkyl-

sulfides, sulfones and, sulfoxides has been accomplished. Synthesis of other 5’-alkylthio pyrimidine and purine

nucleosides is in progress in our laboratory.
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General procedure for the oxidation : anhydrous MMPP (0.5 eq. to afford the sulfoxide derivatives or 1

eq. to the sulfone derivatives), previously dissolved in CHZCIZwere added to a solution of 5’-S-alkyl-5’-

thionucleosides (4a,bor 7a,b) (1 mmol) in CHzCl@feOH (9:1, v/v, 30 mL). The reaction was stirred

with gentle reflux for 2 h. Then, the mixture was cooled, filtered and evaporated to dryness without

heating, under reduced pressure. The residue was purified by column chromatography on silica gel

(CHzCl@feOH, 9: 1, v/v) to give a white solid.

Selected spectroscopic data for thioether-7b : mp.83-86 “C; ‘H NMR 6 (CDC13)8.50 (br s, IH, NH),

7.46 (s, IH, He), 6.06 (&, IH, J = 6.45, 3.75Hz, HI), 4.21 (m, IH, H~,),2.85 (d, 2H, H5;5,,),2.60 (q, 2H,

J = 7.33 Hz, CHZ-S),2.11 (m, 4H, Hz, Hz,, Hj, HY,),1.91 (s, 3H, Me), 1.25 (t, 3H, J = 7.32 Hz, ~-

CHZS-);Anal. (C12H18N203S) calcd: C 53.33, H 6.66, N 10.37, S 11.85; Fo~d: C 53.35, H 6.95, N

10.25, S 11.81.

Selected spectroscopic data for sulfoxide-5’-S(ws)-8b : mp. 161-163 “C; ‘HNMR i$(MeOD) 7.54 (s, IH,

H6),6.09 (m, IH, HIO),4.34 (m, IH, Hal,),3.20 (m, 2H, H5;5-),2.93 (m, 2H, CHZ-S(0)-),2.45 (m, IH, Hz,),

2.33-1.95 (m, 3H, Hz-, H3,,H3S),1.91 (s, 3H, Me), 1.36 (old,J = 7.34, 1.96 Hz, ~- CH2S(0)-); Anal.

(C]zH]BN@dS.O.1%HzO) calcd: C 50.88, H 6.37, N 9.72; Found:C 50.33, H 6.25, N 10.20.

Selected spectroscopic data for sulfone 9b : mp. 201-202 “C; ‘HNMR 6(DMS0-d6) 11.26 (s, IH, NH),

7.54 (d, IH, J = 1.23Hz, He), 5.99 (m, IH, HI), 4.29 (m, IH, H4), 3.71 (old,IHJ = 14.67 Hz, 8.3 IHz,

Hj-), 3.41 (old, IH, J = 14.67 Hz, 4.40 Hz, HY,), 3.05 (m, 2H, CHX%), 2.18 (m, 2H, Hz,v)t 1.91 (m,

2H, H30,3-),1.77 (d, 3H, J = 1.23Hz, 5-Me), 1.16 (t, 3H, J = 7.38 Hz, C&- CHZSOZ);Anal.

(CIZHI,SNZ05S)calcd: C 47.67, H 6.00, N 9.27; Found:C 47.63, H 5.92, N 9.21.

All key intermediates and final compounds 3-9 in Scheme I gave correct elemental analyses (* 0.5%).

These new compounds 3-9 were purified by column chromatography and product structures were

determined by infrared, MS, 250 MHz ‘H NMR and ‘3CNMR.
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